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SOME SEqJENTIAL ANALOGS OF STEIN'S TWNSTAGE TEST

by

William Jackson Hall

University of North Carolina

This paper presents several sequential ana-
logs of Stein's two-stage test procedure for
testing hypotheses about the mean of a normal
population with unknown variance and with speci-
fied error probabilities. When sequential ex-
perimentation is feasible, they provide alter-
natives to the sequential normal test (variance
known) or the sequential t-test. If the
variance is assumed known, the procedures may
still be recommended since the added cost may
be only a very few additional observations on
the average, and the performance of the tests
does not depend on the validity of any assump-
tion about the variance. Moreover, unlike the
t-test, these procedures do not require that
the alternative hypothesis be specified in
standard deviation units.

1. INTRODUCTION

When sampling from a normal population with unknown mean i and
2

unknown variance o2 , one may wish to test the composite hypotheses

HO: <0., a >0 vs. H1: P> (>O), a >0

with pre-assigned strength (a, p) (bounds on the error probabilities).

It is a well-known fact that unless at least bounds are placed on a,

no such non-sequential test exists. A coon solution is to restate

H1 in (unknown) standard deviation units and use the t-test (non-sequen-

This research was supported by the Office of Naval Research under
contract No. Nonr-85(0) for research in probebility and statistics
at the University of 1 .,;h Carolina, Chapel Hill, N. C. Reproduc-
tion in whole or in part is permitted for any purpose of the
United States Government.
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tial or sequential), or, equivalently, allow 0 to be a fonction of

the un:novn a. Neither of these reformulations may be ca.rletely

satisfactory. The only known solution to the problem as stated is

Stein's two-stage procedu (Stein: 1945, Moshman, 1958): a pro-

liminary sample of fixed size m (> 1) is taken in order to esti-
2

mate a2 and a second stage sample, of size depending on this first-

stage estimate s 2 is then taken if necessary; since the first-stage

sample mean and variance are statistically independent, the informa-

tion from the first sample about the mean p can be utilized, to-

gether with that from the second sample, in making the terminal de-

22cision. The size of the second sample depends onl n as2 , so that

its distribution depends only on a 2, and not on p.

A sequential analoC of Stein's procedure is presented here.

Again a first stage sample is used to estimate a2 , but sampling is

then continued, if at all, one observation at a time rather than in

a non-sequential fashion. It is otherwise analogous to Stein's pro-

cedure, but, as one would expect, the distribution of the sarple size

now depends on g as well as on 2 .

This procedure, test T, may be described as a sequential 2_1-

bility ratio test (SPRT) which is not permitted to terminate before

m observations and in which cr2  is replaced in the probability

ratio by the estimate s2 ; tle usual termination bounds A and BM
are modified by a method due to Paulson (1961) in order to achieve

the required strength. An equivalent interpretation of the test T,

useful for studying its properties, is that it is a conditional

SPRT, given s and ca, with temtination boundaries depending on

s and a. Its behavior can be studied by averaging (takinc expec-

tation) with respect to SU. Thus approximations to its OC (operating

cbaracteristic) function and ASH (average samle number) function are

obtained by averaging the corresponding approximations of Wald for the
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conditional SPRT; these approxiUiations are valid if the test is not

likely to terminate with the first stage. Stein's test can also be

considered in this light. Some numerical comparisons of the power

(or OC) and ASN functions, based on these approximations, for the

test T, for Stein's two-stage test, and for the SPRT and fixed sample

size test (FSST) assuming a Inown, are presented. The approxima-

tion obtained for the ASN of T sugests that substantial savings,

compared with Stein's procedure, are possible.

For the case a = , an alternative sequential test procedure T'

is described, usin/inimm probability ratio test (Hall, 1961) in-

stead of the SPRT. Two-sided test procedures, analogous to T and

V, are also briefly discussed.

If an estimate of a2 is available from previous experiments,

the need for the first stage is eliminated; minor modifications of

these procedures would make then applicable. In fact, this is the

context in which Paulson's method vs introduced.

In none of these procedures is any of the information about a,

other than from the first-stage sample, utilized, so that the tests

do not depend on a sufficient sequence of statistics. Alternative

sequential procedures, Tn and Tn, using all available information

about a but without theoretical justification, are proposed. Some

empirical evaluation of these procedures is planned.

Illustrative diagrams for carrying out these sequential tests are

presented.
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2. TIM SEWITrIAL TEST T.

Let XV, , ... be independent N(p, a 2) randon variables,

-co <p <sc, 0 <a <as. Let n be a specified integer exceeding one.

Consider a S of Ii = 0 vs. p = (a inown) based on X, X 1 ,

Xt2) .04 with terraination boundaries A. and B and with a re-

placed by sn where

K = iE l xl/m , V - i

s 2 n x 3 i) 2/(n_.)
M imi 'i L i

an  =- fn An= ,(-2/v 1)/2 (-fn a) [l + (-fn a)/v + o(v2)_7

(1)

b = fn B .v(1-2/. 1)/2 - -(-fn 0) [l + (-'n 3)/I, + O(v 2)7.

We refer to this test as test T. Note that At >A-s 1/aand B<B-I,

with approxinate equalities instead of inequalities if m is large, and

A, B are the conservative terination bounds of Wald (1947. p. 42)

appropriate if a were known.

DenotinC

(2) rn(s) -A E i (x /2)/m (r > m)

T is found to be: observe (X1, ... p and then i' *2'

successively and, for each n > m, after observing Xh,

stop samplinc and make decision do (accept H)if rn(sm) <b ;

stop sczplinG and mks decision dl (accept H1 ) if rn(sm) > n;

continue sanplInC if br, < rn(sn) < an '



3. THE STEMIGH OF TEST T.

For Given (sin, o), consider the conditional SPRT, T(s, a),

of . = 0 vs. = based on %, Xn+1  ... with termnation

bounds and B where

(3) afnkua,2 /02 efn b a2/o2

Computing the relevant probability ratios, noting that , Xm1 ,

are statistically independent of Sm P one finds that decisions are

made mccordine as rn(o) .5 1 m, r n (c) > i m, or S a< rn(a) <i

Usine Wald's conservative bounds on the error probabilities of a

SPRT, we have

Pr Id, using T(sma')Ism , a, =O} < - exp (-aS 2/aa2)

(4)

But s2arn(Sn) s / so that l(s, a) is seen to have

precisely the sane decision rule at each stage as does the test T,

with s. computed from the observed values of X, ... , X.. Thus

gPr {di usinCg T(8S~0.)ISup0.,IL} - £ Pr {di usin, T SLI, ajA

= Prfdi usinC;TkIaliJ

and therefore, using (4) ,

Pr o}p12 Eexp (_a, 22) (1+

for all v since vS2/a2 = X2 and Cexp (t li2) - (1 - 2t) "V/2

Similarly,

(6) Pr usina TI <bm nila ) - . 1) "v/1
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for all a. Since the conditional test T(Snt a) is a normal-nean

SPRT, its 0C function is monotone in p (Wald 1947)p i.e.,

Pr £d± using~ T( m P a)j s m ap is monotone in p for every fixed

s and a. This, together with (5), (6) and (1)s implies

(7) Pr fdlusing TI.H 10}< a) Pr fdousing TIH1}I < 13

and (7) states that T bas strength (c, 0).

Note also that since the MW1T T(smo) terminates with certainty

for every fixed S, the test T also terinates with certainty.

1. THE OC FMURTIO OF T.

For the conditional test T(sma), Vkld's approximation to the

OC function my be used, nanely:

(8) Pr fd01 p al )1q01

where h(g) = 1 - 2p/A and where the "e" implies neglect of excess

over the boundaries; this excess should be amall if the test is likely

to have a sample number substantially larger than m. Taking expec-

tations with respect to S in (8), using (3) and dropping the sub-

scripts on a.) bM and Sn, we have

Prfd0Ia3 } _ah l-e)

- ~exp ( ZMS2/2)7~ep~~S/r

(h > 0)

which does not depend on a. The intecrand on the ES my be expressed
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as an alternatin series with terms of decreaslnC rcnitude so that

successive partial sums Cive upper and lower bounds on it. Taking

expectations tera-by-tern the RM thus yields successive upper and

lover bounds on the approxinaticn to P4%f O 91 p which m~y be

expressed as

1 - (1 + 2ah/v) "v/2 + (i + 2 a-b h/v)'V/2

- (+2 h/l) "v/2 + (I + h/v)"v12

or, usina (i), as

(9) 1- (1 - h + h. 2lv)VI2 + (1 - 2h + h 21v+ h -2/v)-v/2

(1 - 3h + 2h c21V+ h p-2/v)-v/2 + (1. h + 21v+.-21v)-v12

- .0o .

These are valid for h > 0, i.e., for g <A/2. For g > A/2 (h < 0),

we obtain analoCously

(10) Pr fd0 o~l} 1 - e' 1-e (bS,
1- exp (-b--a hS /0 )

S(1 + 2bh/v)-v/2 (1 + 2 b--a h1v)-v1

+ (1 + 2 2b-a h/v)"2/v _ (1 + 4 S& h/v -v/2+

S(1 + h - b-2/v)-v/2 - (i + 2 - bp I/

-h 0 2/v)-v/2 + (, + - -2/- I2/v)-v/2

- (1 + 4h - 2,"2/v- I2/v)-v/2 +

For ., we have
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(3-) Pr {d,, -11 , ('l)l - + ± IhI(c.2/v - .. 7v 12 (1712)

where aCain, as in (9) and (10), the partial SuMs provide successive

upper and lower bounds.

At .L/2 (h 0), we obtain by tainlimits in (8) as

h -> 0 and usinC 1'Hospital's rule:

Pr{do s, 80 t.2} e a/(a-b)

irrespective of s, so that

(12) Pr {dO Ta, A/2 } e a/(a-b) . (Ci'2/v. 1)/(x2/v+ -2/ 2)

which equals 1/2 if a - .

The series (9)-(ni) converee reasonably fast except near h - 0

(4 = 6/2). For e.nple, with a - = .05 and m- 16 and l, we

find the following values for the successive approximtions in (11)

to the power function Pr{d I} -- Pr{ d P,}

1/4 1/2 16 .19, .i4, .16, .9, 16# .15, .15

0 1 16 .050, .0*4, .05, .045

-1/ 3/2 16 .016, .015, .015

-1/2 2 16 .0059, .o056, .0057, .0057

1/4 1/2 31 .21, .16, .17, .17

0 1 31 .050, .046, .046
-1/4 3/2 31 .01, .013, .013

-1/2 2 31 .0041, .00 ., .oo0o
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The saae speed of converaence vas found for a - .01. Calcula-

tion beyond two significant fiures is actually unwarranted since

these for=ulas ignore the excess.

5. THE ASIT MJ CTI N OF T.

For A A/2 (h 4 O) and for all a, we have, uninC (2):

(13) E'rN(o) . A E 1 (x " 12)la 2

= A (.-A/2) 0IT/a2 h A2  o

Also, dropping the subscript m,

(14) rr,(- 1(§) =E,. Cfllq IS.,( Is d

Pr jdiIS})
Now, still dropping the n's, and iCnorini excess,

£ n'/n(a)I s, %_7 a i- a a
CEr(a)ls, d_7 1 ) - b s2/2

The excess should not be significant if IT tends to be larGe re-

lative to m. (I4) thus leads to

() gr(o.) e of b S2 Pr {fS}8 + a S2 Pr {dII jS}7/o2

- a - (a-b) OEsS2 Pr {doIS}7/0,2

Using (8) and proceedine as in the previous section, we obtain for

h>O
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X2 -X( 1 -v/2

Noting that O[x exp(-t #)/v7 - (i +2t) - we find after

takina expectations tem-by-tern, and equating with (13), that for
h>O

(6 (/a) N -2b _ 2(a.b) -- k 12iShv--/
(1) 4/.)Z h f[(1+2ah/v)~/(+

+ (i + 2 -. S h/v)"v/2.( 1 +4 -- S h/ )'1"v/2

+ --- _7

v f-21v., (Cj-21v+ 13-2/y 2 -(
R ~2v ~j/I -/ - 2) [(1 - h +
h d-21v)-l-v12. (1 -2h + h 21v+ h -2/v )-l-v/2

+ ( 1 - 3h + 2h 2 v + h p-2/v)-l-v12

- (l - 4h + 2h d21v+ 2h p-2Iv)-l-vI2 + ... 7 }

For h < 0, the same formula holds with h replaced by -h and with

a and p interchanged. For . ,

(17) yAr2 u 1 (aj-/v +£ 2 E al( 1 f +

i h (C-2/v- i)_71 -V/2 (h o).

At g = 0 and A .A, Wald's conservative bounds (I) on the

error probabilities of the conditional test nay be used instead of

(8); thus (15) leads to

ef g e 2 2 22
a )L- I 27 > - b -(a-b) s exp(-aS / .)

- v /p2/v 1 - (, + '2/v a?/v)_7
and s Iarly for (Io) 2 f-, 7 with C and 0 interchaned.
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If1 a, these two relations reduce to

e

(18) (&/,.)2 C f1,14. or dL7 > V (&j-2/ _ 1 _ 2a).

For h = 0 (P = A/2), we have, analoc~ous to (~-i)

(19) gfrii(a)7 2  . (a/l) 2 O'NI -=/27

and

(20) f/rii(O)7 2  e2 E2 c S /F4 (&2 - b2)E SI Pr {d0 1S}.7/o"),

Equatine (19) and (20) and usinC (12),

(21) (A/ >) 2 e a,2  (/_7-  2/2 - -a(l +2

2 2 (.2/v (-/
Tv (1 + V)(cx2/ v - i) - i).

Some successive approximations from (17) appear below (a = = .05);

evaluations from (18) and (21) also appear:

1/2 0 16 15.4 from (21)

1/4 1/2 16 10.2, 11.2, 10.9, 11.0, 10.9, 11.0, 11.0

0 1 16 6.9, 6.9; lower bound from (18) is 5.9

-1/4 3/2 16 4.8, 4.8

-1/2 2 16 3.7, 3.7

1/2 0 31 11.7 from (21)

1/4 1/2 31 8., 9.*, 9.1, 9.2, 9.2

0 1 31 6.1p 6.1; lower bound from (18) is 3.6

-1/4 3/2 31 4.71 4.3

-1/2 2 31 3.3, 3.3
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ConverGence vs slichtly faster for a = - .01, and the lower

bound from (18) vs much closer to the approximation (17).

6. CaIARISOH I=H THE OC AIM AS FunCTIONS OF

STE I'S TW-STAGE TEST

Let t i, be that number which is exceeded by a t-statistic

vith probability a (v degrees of freedom). The total sample size

N in Stein's (one-sided) procedure with initial sample size m = v+l

and error bounds (a, 0) is Given by

N ,rax ([f _(t + t )2 / a2 + , ) ,

vhere "[ _7" means "larGest inteGer in", and

(22) (A/a))2  N - (t + tV00)2 P

the approximtion beine valid if it implies 0 N is somewhat larger

than m (Stein, 1915).

The terminal decision rule for Stein's test may be written

A s2 > 2 t2 decided 1
I= ( / ) m < t 0.#O - t )/2 decide

NT by S (t + t )/A2, the CC function is found

to be

(23) Pr {dOI l} "- F/-tv,. - p(tv,a + tV,A) A 7

where F is the distribution function of a (central) t-statisticV

with v dearees of freedom. The true 0C function is presuably

sliahtly steeper since the true sample size tends to be larger than

the approxinatin value.
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Tables 1 and 2 at the end of this paper present sooe ccr.ari-

sons of the approximte power and ASIT functions of the sequential

test T and Stein's two-stage test (cc - 0 = .05 and .01). Also

included in the tables are the corresponding approxi'ate values for

the SPRT (with A = 1-a/a 1 i/B) and the fixed sample size test

(FSST) if a were imnown (correctly). Of course, if the assu.ption

about a were incorrect, the power functions of the SPRT and FSST

nay be drastically altered.

It is of interest to note that the power functions of these tests

become steeper as one moves from left to riaht in Table 1; thus, the

test T discriminates best for intermediate p-values and the FSST

discriminates best for extreme p-values.

These calculations suggest that substantial savings may be

possible using the sequential test T -- at least if one of the

hypotheses is correct. The comparison between T and Stein's test

is analoGoas to the comparison between the SPRT and the FSST of the

same strength.

Actually, the comparison would be in closer analogy if the SPRT

with conservative boundaries (A = 1/a = 1/B) were considered, since

the test T uses conservative boundaries. If the boundaries of T

were modi.'ied, by increasing a and P3 in (1), to achieve error

probabilities equal to a, the ASN of T would be further reduced.

(Calculations indicate that substitution of a/1- for a and

0/1-a for 0 in (1) still gives conservative bounds on the error

probabilities.) The lack of knowledge about a costs only a very

few obseixtions (perhaps two or three) on the averace, and thus the



tect T or Stein's test may be reacrmended even if c* is thoucht

to be knom (if a one-staGe test is not essential).

7. AN AIEPJATIV SEM1IIAL TEST T'

For the synetric (a - A) one-sided case, a minimup probability

ratio test (1T), which has converaine straiGht-line boundaries

(Hall, 1961), can be adapted in the same manner as wae the SPRT above.

The MPRT is equivalent to one of Anderson's (1960) tests. We thus

obtain the followinc test T' with decision rule:

stop samplinC as soon as AIE l(xi- ./2)1/s2 >

cm /4e M (n > n)

and choose dl or do according as E(xi - /2) is > or < 0

where

(24) c. = Vf ()2/ v - i7 = -2 fn 2 fl + (-2 fn 2a)/v + o(12)7•

After m observations have been taken and s couputed, an upper

bound on the total sample size is 4c s 2 /A2 .

1o approximations to the OC or ASK functions have been ob-

tained. Presumably T' compared with T would have a smaller ASN

in the neighborhood of .= A/2 at the cost of a sligChtly larger

ASI at (and beyond) p % 0 and a. The cotarison would be analogous

to the comparisons of the SPRT and 1RT (o knovn) Cgiven by Anderson

(1960).

If a , the test can still be used with 2a in (24) re-

placed by a + P, but then one can only assert that the sum of the two

error probabilities is less than a + P (Hall, 1961).
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8. THE TWO-SIDED CASE

The two-sided normal test, variance known, based on the veiLLht

function method (Wald, 1947) or the invariance method (Ha.li, 1959),

cannot be adapted to the case of urmown variance as vas the one-
2

sided test, since a does not factor out of the relevant probabili-

ty ratios. However, the Sobel-Wald test procedure (Sobel and Wald,

1949), in which one in effect runs two one-sided tests simultaneously,

is sasily adapted. To test g - 0 against JiLj > A, one can run

two T (or T') tets -- of -= 0 aginst p = A and p = 0

against p = -A -- sinultaneously and continue sanpling until both

tests have terminated.

9. HEURISTIC TESTS Tn and T'
n n

In discussing the sequential estimation of g (a unlknown), Anscoube

(1553) noted that, if the procedure were not allowed to terminate early,

a would essentially be known. Thus, if one uses a procedure requiring

knowledge of a but replaces it by an estimate, the properties of

the procedure should not be Creatly affected. The tests T and T'

are like this; in fact, the test boundaries suitable if a were known

are widened to account for the fact that a is estimated on u-i de-

grees of freedo. However, a is not re-estimted at each successive

stage, and the choice of ra seems arbitrary; in fact, if a were

much smaller than expected, a completely sequential procedure may

terminate I 'ore the first staze of T is completed.
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The followinC modification of T is proposed purely on in-

tuitive Crounds: re-estimate a2 by a2 at each stage n andnn

base the test on rn(sn) (n > 1) vith boundaries (an, bn) given

by (1) with v replaced by n-i. This test, Tn) is like a SPHT

(a known) with a replaced by a new estivate at each stage, and

with the boundaries widened in an attempt to account for the lack

of lnowledge about a. The boundaries of Tn  converge to lald's

conservative boundaries (-fn a, fn p) which are appropriate (though

slightly conservative) if a 2 is known. A diagram for carrying out

this test is illustrated in Figure 1, together with diagrans for other

sequential tests. (The SPT in the diaCram uses Wald's anrcuicte

boundaries, a a fn (I -7/a) and b - fn (P/I-) .)

The alternative test T' can be modified analogously, obtaining

Tn' with the roles of c and s replaced by cn and sn . Its

boundaries depend on a2 and thus cannot be graphed in advance (in

the diaram, the expected values of the boundaries are graphed).

No theoretical evaluation of these procedures has been possible.
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F±iua'e 1. DiaCrams for six sequential tests of p <50 aU&Inht

i n u.pper boundary: choose di (I&.;:A)

aKT lower boundary: choose do (4-<)

5

0m.L-16 q6

-5

a~I c for SPRT & i4TRT (o known) -

10
JV2 s 2 for T& T -

j

10-S 
2 f r

16 -gbbour dryl f or T I
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APPEMIX

Explanation of Tables

Table 1: For the sequential test T, the power function

Pr {d1 I4} vas calculated from (11) and (12). : For the SPET, it

was calculated from Wald's approxination (l - e'ha )/(e h a- e h a )

where a a fn (TI-'/). For the other tests, it ms calculated

from (23) which reduces to F(-Ihtva ) where FV(tV)u 1 - a; for

the fixed sample size test (FSST), v urn , i.e., F is the standard

Vnormal d.f. The Pearson and Hartley (19%) tables of F V were used.

Table 2: For the test T, the ASIT function ws calculated from

(17) and (21). For the MW, Wald's approximations were used, namely

(&/,)2 0N,, 2a fl - 2P(d17 if h 0 and = a2 if h = O.

For the other tests, it se calculated from (22), and is the same for

all g-values.

The lerminal decision rule in every instance is the sane, namely

choose % ( .< o) if < /2 and choose d, (p ? 6) if , > A2

The approximations to the power function and ASIU function lnore

a) excess over the boundaries in the sequential tests,

b) the restriction that N must be intearal,

c) the restriction that N > n for test T and Stein's test,

and are thus valid if N is large relative to m with high probability.

The author wishes to acknowledre the assistance of 11r. K.

Fukushima in preparina these tables and those presented in sections

4 and 5.
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TABLr I 20
APPROXMM.T POOR MICETIOUS, Pqdl il , OF PROCEDUMS

FOR TESTING <O0 AGAW1ST ~> A(am~

SqEiTIAL TESTS oM- oR TWO-STAG_ TESTS
c l /A h Test T SPRT Stein's Test FmS

r - 16  n -31. (a- known) rmu=16 um 31 (orknown)

.25 0.5 .151 .168 .187 .197 .201 .205

.1 0.8 .0727 .0777 .o866 .0906 .0923 .0941

.05 0 1.0 .01& .0463 .05 .05 .05 .05

-. 1 1.2 .0285 .0278 .028 .0264 .02" .02 2

-. 25 1.5 .0149 .0132 .0329 .0095 .0081 .oo68

-. 5 2.0 .00565 .0040 .00276 .00159 .00097 .00o5o

.5 0 .5 .5

.25 0.5 .o62 .075 .091 .106 .ine. .122

.1 o.8 .0192 .0216 .o247 .0275 .0293 .0313
.01

0 .o 0093 .009 .01 .01 .01 .01

-. 1 1.20c0496 .oo53 .0397 .00349 .o3c7 .oo62

.5 .0o=6 .=0154 .oolo1 .00071 .03 .00019
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TABLE 2

APPROX.TE ASH AJNTIONIS, (A/')2 111 ,  OF PROCEDURES

FOR TESTINTG g<O0 AGAIIUST .~> &u0

SEQMESTIAL TESTS O!TE- OR TWO-STAGE TESTS

a /A h Tes T RT Steln's Test FSST

16 m 6 -31 (oImovn) M 616 -31 (arnovn)

.5 0 15. 11.7 8.7

.25 0.5 3-.O 9.2 7.4

.1 0.8 8.2 7.2 6.1

.05 0 1.0 6.9 6.1 5.3 12.3 11.5 10.8

S-.1 1.2 5.9 5.3 4.6

-. 25 1.5 4.8 4.3 3.8

-.5 12.0 3.7 3.3 2.9

- I o 45.8 31.0 21.1

.25 0.5 23.1 18.8 15.0

.1 0.8 15.5 13.0 10.9

.01 27.1 214.1 21.6

0 1.0 12.6 10.6 9.0

1 1.2 10.5 8.9 7.6

.25 1.5 8.3 7.2 6.16 --


